
DOCUMENT : RG000000N REVISION : A0 PAGE : 1 OF10

DOCUMENT: RG000000NREVISION: A0PAGE: 2 OF10

Electrical Specifications				
Power Rating*	1/10 W			
Resistance Values	E-24 series			
Resistance Tolerance	· · · ·	$\pm 2.0\%(G),$.0%(J)	$\pm 1.0\%$ (F), $\pm 2.0\%$ (G)	±5.0%(J)
Resistance Range (Ω)	10~1M	3.9~9.1, 1.1M~5.1M	1~3.6, 5.6M~10M	1~3.6, 5.6M~22M
T.C.R. (Temperature Coefficient of Resistance) ppm/°C (code)	±200(S)	±250(S)	±350(S)	±350(S)
Operating Temperature Range	-55°C to +125°C			
Max. Operating Voltage**	150V			

Note: *Package Power Temperature Derating Curve

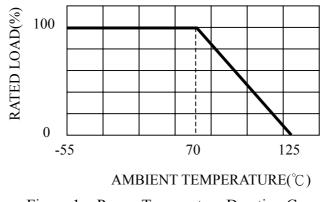
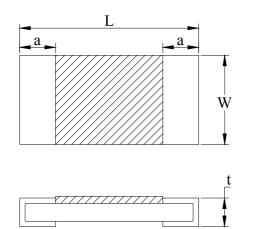


Figure 1. : Power Temperature Derating Cure


Note: **Resistors shall have a rated DC or AC(rms) continuous operating voltage corresponding to the power rating, as calculated from the following formula

$V = \sqrt{P \times R}$	Where V	: Rated voltage (V)
	Р	: Rated power (W)
	R	: Nominal resistance (Ω)

If the voltage so obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

DOCUMENT	: RG000000N
REVISION	: A0
PAGE	: 3 OF10

4. Outline dimensions

Code Letter	Dimension
L	2.00 ±0.2
W	1.25 ±0.2
t	0.55 ±0.1
а	0.40 ±0.2

Unit : mm

- 5. Marking
 - 5-1 Marking in E-24 Series :

A rated resistance shall be marked on the protect coating with three digits of number. Example :

 $3.9\mathrm{k}\Omega \rightarrow 39 \mathrm{X} \ 10^2 \rightarrow 392$

5-2 Marking in E-96 Series :

A rated resistance shall be marked on the protect coating with four digits of number.

Example :

 $10.2\Omega \rightarrow 102 \text{ X } 10^{-1} \rightarrow \boxed{10R2}$ $10.2k\Omega \rightarrow 102 \text{ X } 10^{2} \rightarrow \boxed{1022}$

5-3 Marking in Jumper :

Example :

 $0\Omega \rightarrow R00$

6. Life Tests

6-1 Electrical

-	Specification and Requirement		
Item	Resistor	Jumper	Test Method
	\triangle R: ±(2.0%+ 0.1 Ω) Without damage by flashover, spark, arcing, burning or breakdown	Max. 50mΩ	 (1) Applied voltage: 2.5 times rated voltage or max. overload voltage whichever is lower (2) Test time : 5 seconds
Insulation Resistance	Over 100 M Ω on Overcoat layer face up Over 1,000 M Ω on Substrate side face up		 (1) Setup as figure 2 (2) Test voltage: 100 V_{DC} (3) Test time: 60 + 10 / -0 seconds
Voltage Proof	No mechanical damage		 (1) Setup as figure 2 (2) Test voltage: 100 V_{AC}(rms) (3) Test time: 60 +10 / -0 seconds

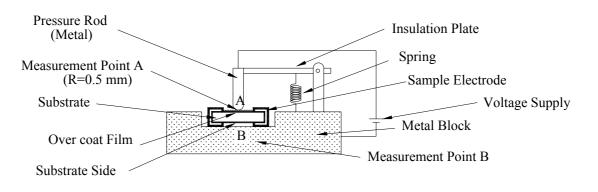
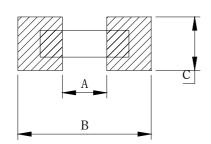


Figure 2 : Measurment Setup

DOCUMENT : RG000000N REVISION : A0 PAGE : 5 OF10

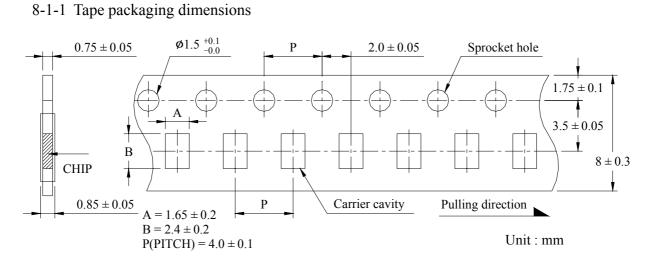

Specification and Requirement		Track Mathead	
Item	Resistor	Jumper	Test Method
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder		Solder bath: After immersing in flux, dip in 245 ±5°C molten solder bath for 3 ±0.5 seconds
Resistance to Solder Heat	\triangle R: ±(1.0%+ 0.1 Ω) Without distinct deformation in appearance	Max. 50mΩ	 (1) Pre-heat: 100~110°C for 30 seconds (2) Immersed at solder bath of 270 ±5°C for 10±1 seconds Measuring resistance 1 hour after test
Shock	\triangle R: $\pm (0.25\% + 0.05)\Omega$ Without mechanical damage such as break		 Peak value: 490N Duration of pulse: 11ms 3 times in each positive and negative direction of 3 mutual perpendicular directions
Bending Test	$\triangle R: \pm (1.0\% + 0.1 \Omega)$ Without mechanical damage such as break	Max. 50mΩ	Bending value: 3 mm for 30 ±1 seconds
Resistance to solvent	No remarkable abnormality		 (1) Solvent: Isopropyl alcohol (2) Immersed in solvent at room temperature for 60 ±10 seconds

DOCUMENT : RG000000N REVISION : A0 PAGE : 6 OF10

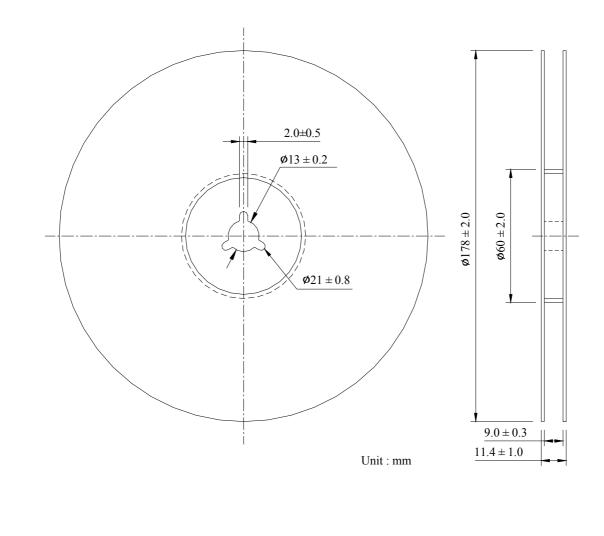
Item	Specification and Requirement		Test Method
Itelli	Resistor	Jumper	Test Method
Rapid change of Temperature	$\triangle R: \pm (1.0\% + 0.1 \Omega)$ Without distinct damage in appearance	Max. 50mΩ	(1) Repeat 5 cycle as follow: (-55 $\pm 3^{\circ}$ C,30minutes) \rightarrow (Room temperature, 2~3 minutes) \rightarrow (+125 $\pm 2^{\circ}$ C,30minutes) \rightarrow (Room temperature, 2~3 minutes) Measuring resistance 1 hour after test
Moisture with Load	\triangle R: \pm (3.0%+ 0.1 Ω) Without distinct damage in appearance Marking should be legible	Max. 100mΩ	 (4) Environment condition: 60 ±2°C,90~95% RH (5) Applied Voltage: rated voltage (6) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (7) Measuring resistance 1 hour after test
Load Life	\triangle R: \pm (3.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Test temperature: 70 ±3°C (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Low Temperature Store	\triangle R: ±(1.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 50mΩ	 (1) Store temperature: -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test
High Temperature Store	$\triangle R: \pm (1.0\% + 0.1 \Omega)$ Without distinct damage in appearance	Max. 50mΩ	 (1) Store temperature: +125 ± 2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test

DOCUMENT	: RG00000N
REVISION	: A0
PAGE	: 7 OF10

7. Recommend Land Pattern Dimensions

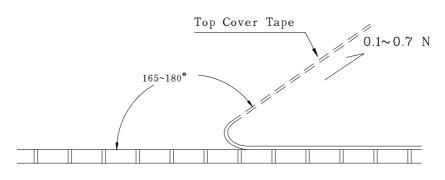


А	0.9~1.1
В	3.5
С	1.1~1.3


DOCUMENT : RG000000N REVISION : A0 PAGE : 8 OF10

8. Packaging

8-1 Dimensions


8-1-2 Reel dimensions

DOCUMENT : RG000000N REVISION : A0 PAGE : 9 OF10

8-2 Peel force of top cover tape The peel speed shall be about 300 mm/minute

The peel force of top cover tape shall be between 0.1 to 0.7 N

8-3 Numbers of taping

5,000 pieces/reel

8-4 Label marking

The following items shall be marked on the production and shipping Label on the reel.

8-4-1 Production Label

- (1) Part No.
- (2) Description
- (3) Quantity
- (4) Taping No.
- 8-4-2 Shipping Label
 - (1) *Customer's name
 - (2) *Customer's part No.
 - (3) Manufacturer's part No.
 - (4) Manufacturer's name
 - (5) Manufacturer's country
 - *Note : Item (1) and (2) are listed by request

9. Care note

- 9-1 Care note for storage
 - Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85°C RH) However, a humidity keep it low, as it is possible.
 - (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
 - (3) Chip resistor shall be stored with no moisture, dust, a Material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- 9-2 Care note for operating and handling
 - (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
 - (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
 - (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
 - (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
 - (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
 - (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.